
1

Status of Draft ANSI
X9.44 (& More)

Burt Kaliski and Jakob Jonsson
RSA Laboratories
NIST Key Management Workshop
November 1–2, 2001
(Rev. November 6, 2001)

Outline

• ANSI X9.44 update

• Security proof background

• Scheme details

2

ANSI X9.44

• Key establishment schemes based on the integer
factorization problem

– Key transport and key agreement

– RSA algorithm; also Rabin-Williams?

• Companion to ANSI X9.31 for signatures, ANSI
X9.42/.63 for discrete logarithm / elliptic curve
problem

• Along with other X9 documents, basis for NIST
key management scheme FIPS

Design Choices

• Encryption schemes
– Primitives and “encoding methods”

• Key transport schemes

• Key agreement schemes

3

Primary Methods

• PKCS #1 v1.5 encryption
– 1991, no security proof, widely deployed

• RSA-OAEP
– 1994, loose security proof, in some standards, not

deployed

• RSA-KEM, et al.
– 2001 (and previous), tight security proofs, brand new

Project Evolution

• RSA-OAEP in drafts through May 2001

• PKCS #1 v1.5 added in June 2001 to reflect
practice, esp. SSL/TLS, but not for use with AES

• TLS working group decides in August 2001 to use
PKCS #1 v1.5 with AES

– NIST draft guideline reflects decision
(TLS_RSA_WITH_AES_128_CBC_SHA)

4

Current Content

• Encryption schemes:
– PKCS #1 v1.5

– RSA-OAEP

• Key transport schemes:
– One-pass with one public key

• reflects S/MIME “recipientInfo”

• Key agreement schemes:
– Multiple-pass with one public key, key confirmation

• reflects SSL/TLS handshake

 PKCS
#1 v1.5

RSA-
OAEP

RSA-
KEM

Other

PKCS #1 v2.0 X X

IEEE Std 1363-2000 X

NESSIE Phase 2 X

CRYPTREC Eval. X

ISO 18033-2 Draft X X RSA-
OAEP+

Related Efforts

5

Outline

• ANSI X9.44 update

• Security proof background

• Scheme details

The Adversary

• An adversary is an algorithm that tries to break a
cryptographic scheme, i.e., solve a problem that
undermines the security of the scheme.

• Examples of such problems:
– Find the plaintext corresponding to a ciphertext in an

encryption scheme

– Find the underlying secret key used to encrypt
messages

– Find the inverse of an element with respect to a
function that is assumed to be one-way

– Given a one-way function, find two elements with the
same image (a collision)

6

Goals of Adversary

For asymmetric schemes, two kinds of security
goals are normally considered:

• Indistinguishability of encryptions (IND)
– Given two messages and the encryption of one of the

messages (the target ciphertext), it is hard to determine
which message is encrypted

• Non-malleability (NM)
– Given a target ciphertext y, it is hard to find another

ciphertext y’ such that the corresponding plaintexts are
“meaningfully related”

The Strength of the Adversary

Depending on whether the adversary has access to an oracle
performing private key operations, we obtain three basic
levels of adversary strength:

• Chosen Plaintext Attack (CPA, offline attack)
– The adversary can only encrypt messages

• Non-adaptive Chosen Ciphertext Attack (CCA1)
– The adversary has access to a decryption oracle until, but not

after, it is given the target ciphertext

• Adaptive Chosen Ciphertext Attack (CCA2)
– The adversary has unlimited access to a decryption oracle,

except that the oracle rejects the target ciphertext
• The CCA2 model is very general – in practice, adversaries

are much weaker than a full-strength CCA2 adversary
• Yet, many adversaries are too strong to fit into CCA1

7

The implications between the attack models are as follows:

Six Attack Models

NM-CPA IND-CCA1

IND-CCA2NM-CCA2

NM-CCA1

Security in
stronger model

Security in
weaker model

IND-CPA

Security Arguments

Security arguments can be divided into different categories,
ranging from the strongest to the weakest:

• Existence of stringent security proof
– We can prove that the scheme is secure under certain

assumptions

• Heuristic security arguments
– We have no proof of security, but we can give evidence that

the scheme is hard to break
– Security claims on symmetric ciphers and cryptographic hash

functions belong typically to this category

• Ad hoc arguments
– “The scheme is secure because there is no known attack”

8

Assumptions

Given a stringent security proof, there are a variety of
possible assumptions on the underlying components,
ranging from the strongest to the weakest:

• No assumptions are needed
– The security proof requires no nontrivial assumptions

• A certain mathematical problem is hard
– To break the scheme, you must solve the underlying problem

• Some components are assumed to have “ideal” properties
– Examples: Random oracle model; Generic group model

• Unconventionial restrictions are put on the adversary
– The adversary is prohibited from performing certain

operations

Hard Problem

• A typical security proof for an asymmetric encryption
scheme ES translates a successful attack into a solution to
an underlying hard problem P (e.g., the RSA problem).

• Typical assumption:
P cannot be solved with probability εε within time t

• Desired consequence:
ES cannot be broken with probability εε* within time t*, where

t* / t is as large as possible;
εε* / ε ε is as small as possible.

• The better t* and εε*, the tighter security proof

• The stronger attack model (e.g., CCA2 instead of CCA1), the
smaller t* and the larger εε* (if proof even exists)

9

Diagram of Provable Security

Complexity

Parameter size

t = Complexity of most efficient
solution to hard problem.

t* = Provable lower bound for
encryption scheme in terms of t.

t

t*

Adversary’s goal

Designer’s goal

Threshold for
the adversary

(e.g. 280)

Hard problem

Encryption scheme

Quality of Security Reduction

• For a security proof to apply to practical parameters, we
typically need

t* ≈≈ t

εε* ≈≈ εε

• Proofs tend to have loose reductions that give useless
security guarantees in practice

• Yet, the very existence of a security proof with bounds
polynomial in t indicates that the algorithm design is sound

– An attack is translated into one solution to the underlying
problem – not necessarily the most efficient solution

– The derived solution uses the adversary only as a black box,
which may leave room for further optimizations

10

Summary

• Four parameters need to be taken into account
when analyzing a security proof:

• The challenge for the adversary
– IND, NM, ...

• Strength of the adversary
– CPA, CCA1, CPA2, ...

• Assumptions on the underlying primitives
– Hard mathematical problem, ideal components, ...

• Quality of security reduction (in case there are
underlying nontrivial assumptions)

– Tight, adequate, loose

Ideal Properties of a Proof

• The challenge for the adversary should be as
easy as possible

• The adversary should be as strong as possible

• The assumptions should be as weak as possible

• Quality of security reduction should be as good
as possible

11

Security Proof Template

SCHEME

CHALLENGE – ATTACK

is secure in MODEL

ASSUMPTIONS on underlying primitive(s)

with

Assume

Then

TIME bound

impossible to invert RSA with prob. εε within time tAssume

against a

RSA-OAEP

IND – CCA2

the random oracle modelThen is secure in

against an adversary

and SUCCESS bound

with running time at most t/2 – O(q2) and desired success
probability at least 4√ε√ε

adversary

given ADDITIONAL constraints

Example

given at most q oracle queries

Outline

• ANSI X9.44 update

• Security proof background

• Scheme details

12

Key Establishment Schemes

• The goal in our setting is one of the following:
– To transport a key from one entity to another (key

transport)

– To enable two (or more) entities to agree on a key (key
agreement)

• Focus on two common schemes:
– Key transport: Encrypt key with recipient’s public key

– Key agreement: Encrypt key material with recipient’s
public key; derive key from key material, nonces

• Security depends on underlying encryption
scheme

Generic Key Transport Model

E

SENDER RECIPIENT

Wrapped SymK
D

Optional
parameters

Public Key Private Key

SymK
This envelope

contains a
wrapped key SymK

13

Generic Key Agreement Model

KDF

CLIENT SERVER

Secret H

“C”||N1||N2

H

E
Wrapped PreSec

PreSec
This envelope

contains a
wrapped key PreSec

RNG N1

RNGN2

Public Key Private Key

T1

T2

KDF

Secret

D

“S”||N1||N2

Security Requirements

• For generic key transport, underlying encryption
scheme should (ideally) be IND-CCA2

– Wrapped SymK should not reveal information about
SymK, given access to decryption oracle at other
points

• For generic key agreement, underlying “key
encapsulation” should be IND-CCA2

– (Wrapped PreSec, T1) should not reveal information
about Secret, given access to decryption oracle at other
points

– Freshness, etc. are also important

14

Three RSA-Based Encryption
Schemes

• PKCS #1 v1.5 RSA encryption

• RSA-OAEP

• RSA-KEM (“simple RSA”) + DEM

RSA-PKCS #1 v1.5

• Introduced in 1991 in PKCS #1

• De facto standard for RSA encryption and key
transport

– Appears in protocols such as TLS

• No security proof exists
– Yet, no fatal attack against the scheme so far

15

RSA-PKCS #1 v1.5 Encryption

EM

M

Padding

000200 Padding

Random
nonzero

bytes

RSAEP CPublic Key

RSA-PKCS #1 v1.5 Analysis

• Attack against low-exponent RSA when very long messages
are encrypted
– Attack applies if large parts of a plaintext is known or if similar

messages are encrypted with the same public key
– Mounted by Coppersmith et al. (1996); improvements by Coron

et al. (2000)
– Restrictions on the size of the plaintext help thwart attack
– Not an issue in key agreement protocols

• Chosen ciphertext attack (“Million Message Attack”)
– Requires a decryption oracle that reports whether a given

ciphertext is valid or not
– For a 1024-bit modulus, the attack requires about one million

decryption queries
– Mounted by Bleichenbacher (1998)
– Attack is thwarted if ciphertext validity is not revealed, as in

TLS

16

RSA-OAEP

• Asymmetric encryption scheme combining RSA
with the OAEP encoding method

• OAEP was invented by Mihir Bellare and Phillip
Rogaway in 1994

– Additional enhancements by Don B. Johnson and
Stephen M. Matyas in 1996

• Already widely adopted in standards
– IEEE Std 1363-2000

– ANSI X9.44 draft

– PKCS #1 v2.0 and v2.1 draft

RSA-OAEP Encryption

MGF

MGF

seed

masked DB

EM

 M00 ... 01pHashDB =

00

RSAEP CPublic Key

RNG

17

RSA-OAEP Security

• RSA-OAEP is provably secure against IND-CCA2 in the
random oracle model

– Fujisaki, Okamoto, Pointcheval, and Stern (2000)

• Assume that the following is true:
– The RSA encryption primitive cannot be inverted with

probability εε within time t

• Then the following holds:
– RSA-OAEP cannot be broken with prob. εε* within time t*,

where
εε* ≈≈ 4√ε√ε;
t* = t / 2 – O(q2)

(q is the number of oracle queries)

• Unfortunately, the reduction is not tight

More on RSA-OAEP

• Bellare and Rogaway proved that RSA-OAEP is IND-CCA1
secure and conjectured IND-CCA2 security

• Shoup observed that a general IND-CCA2 proof for OAEP
combined with any trapdoor function cannot be obtained

– In general, the security of f-OAEP can only be related to the
hardness of partially invert the underlying trapdoor function f

• Fujisaki, Okamoto, Pointcheval, and Stern demonstrated
that the specific combination RSA-OAEP is IND-CCA2
secure

– Unfortunately, security bounds are weaker than in the Bellare-
Rogaway IND-CCA1 proof

18

RSA-KEM+DEM

• KEM = Key Encapsulation Mechanism

• DEM = Data Encapsulation Mechanism

• Construction goes back (at least) to Zheng and Seberry in
1992 and Bellare and Rogaway in 1993. Further
development by Victor Shoup

– RSA-REACT is a variant by Okamoto and Pointcheval

• RSA-KEM (“Simple RSA”) generates a random integer r,
derives a symmetric encryption key from r via a key
derivation function (KDF), and encrypts r with RSA

• DEM encrypts a message M with (e.g.) AES using the
derived key

– DEM can be combined with a keyed MAC of M, where the key
is derived from r. The combination is denoted DEM1

– If M is key material, DEM can be AES key wrap

RSA-KEM Encryption

KDF

RNG

r DEM

RSAEP C0

Derived
key

C1

M

recipient

Public
Key

19

RSA-KEM Key Wrap

KDF

RNG

r

RSAEP C0

Derived
key

Wrapped
AES key

AES key

recipient

Public
Key

AES
keywrap

Note: KDF can be based on AES via standard block-cipher
to hash construction, so only RSA+AES needed

RSA-KEM Security

• RSA-KEM has a tight security, given the random
oracle assumption on the KDF; we have

εε* ≈≈ εε;

t* = t – O(q)

– Reduction is linear in terms of the number of random
oracle queries

– Security proof can be extended to RSA-KEM+DEM1
with the security expressed tightly in terms of the
hardness of RSA and the security of the symmetric
encryption and MAC algorithms

20

PKCS #1 v1.5 as a KEM

• RSA-KEM “encapsulates” keys as
– K = KDF(r), c = fRSA(r), r random

• PKCS #1 v1.5 (P1) can do so as
– K = KDF(r), y = fP1(r), c = (y, H(y,r)), r random

• Claim: P1-KEM has tight security under the “Gap-
P1” assumption

– Hard to invert fP1 given a P1 “decision” oracle

• Decision oracle indicates whether (y,r) is a valid P1
pair, i.e., y = fP1(r)

– TLS handshake using PKCS #1 v1.5 actually based on
P1-KEM — so has tight security proof

• K derived from Secret, y = Wrapped PreSec, H = T1,
r = PreSec

Generic Key Agreement Model

KDF

CLIENT SERVER

Secret H

“C”||N1||N2

H

E
Wrapped PreSec

PreSec
This envelope

contains a
wrapped key PreSec

RNG N1

RNGN2

Public Key Private Key

T1

T2

KDF

Secret

D

“S”||N1||N2

21

Conclusion

• ANSI X9.44 draft moving along to guide and
reflect practice

• Goal: consider what’s in use, what can be proved

• RSA-KEM “key encapsulation” an alternate
approach, after PKCS #1 v1.5, RSA-OAEP

• New security claims for PKCS #1 v1.5 key
encapsulation, as in TLS

Backup Slides

22

Indistinguishability (IND)

• Intuition:
– Given two messages and the encryption of one of the

messages (the target ciphertext), it is hard to determine
which message is encrypted

• The IND adversary works in two steps.
– After step 1, the adversary outputs two messages x0, x1

– Let b = 0 or 1 with equal probability. Form a ciphertext y by
encrypting xb and give y to the adversary

– After step 2, the adversary outputs a bit b’ that she believes
equals b

– The adversary is successful if b = b’
• This means that she is able to distinguish between

encryptions of x0 and x1

Non-Malleability (NM)

• Intuition:
– Given a target ciphertext y, it is hard to find another

ciphertext y’ such that the corresponding plaintexts are
“meaningfully related”

• The NM adversary works in two steps.
– After step 1, the adversary outputs two messages x0, x1

– Let b = 0 or 1 with equal probability. Form a ciphertext y by
encrypting xb and give y to the adversary

– After step 2, the adversary outputs a binary relation R and a
ciphertext y’

– Let x’ be the decryption of y’. The adversary is successful if
R(x’, xb) is true and R(x’, x1–b) is false

23

NM Security ⇒⇒ IND Security

• Let A be an IND adversary. Define an NM adversary B as
follows

– After step 1, A outputs two messages x0, x1

• B outputs the same messages
– Let b = 0 or 1 with equal probability. Form a ciphertext y by

encrypting xb and give y to B
• B passes y on to A

– After step 2, A outputs a bit b’
• B forms x’ = xb’ + 1, encrypts x’ to the ciphertext y’, and

outputs (y, R), where R(u,v) is true if u = v+1

• B is successful if A is successful
– If b = b’, then x’ = xb + 1 and x’ " x1–b + 1

IND and NM Example

In “Pure RSA”, a plaintext x is encrypted as y = xe (mod N)

Pure RSA does not satisfy the IND or NM criteria:

• NM is violated: Given a ciphertext y, the ciphertext y’ = yke

(mod N) has the property that the corresponding plaintexts
x and x’ satisfy x’ = xk (mod N)

– This observation exploits the underlying mathematical
structure of RSA

• IND is violated: It is easily checked whether or not a certain
ciphertext is the encryption of a certain message.

– This is true for any deterministic scheme and also translates
into an NM attack

• Conclusion: RSA in itself does not provide any security
– Yet, it may well be useful as a component in a larger scheme!

24

NM-CCA2 ⇔⇔ IND-CCA2

• NM ⇒⇒ IND is always true.

• For the other implication, let B be an NM-CCA2 adversary.
Define an IND-CCA2 adversary A as follows.

– After step 1, B outputs two messages x0, x1

• A outputs the same messages
– Let b = 0 or 1 with equal probability. Form a ciphertext y by

encrypting xb and give y to A
• A passes y on to B

– After step 2, B outputs a ciphertext y’ and a relation R
• A sends y’ to the decryption oracle (this is only possible

in CCA2, not in CCA1!) and obtains a plaintext x’
• If R(x’, x0) is true, than A outputs x0. Else, A outputs x1

• A is successful if B is successful

Random oracle model

• A random oracle assumption on a function H : X →→ Y means
that an adversary cannot compute or even predict the value
of H(x) for any x :

– To compute H(x), the adversary sends x to a random oracle.
– The oracle responds with a value chosen at random (typically

uniformly) from the set Y.
– The chosen value is independent from earlier queries and

responses.

• In practice, a fixed function h cannot be interpreted as a
random oracle.

– Outputs are fixed, not random.

• However, the assumption is useful in that it restricts the
model to generic attacks not exploiting the inner structure
of H.

25

A more realistic oracle model?

• Suppose H is randomized; H takes as input an element x,
generates a random r, and outputs y = H’(r, x) with H’ fixed.

• Introduce an inversion oracle that finds r such that
y = H’(r, x) for inputs x and y.

• Drawback: If H’ is hard to invert in practice, the inversion
oracle cannot be simulated, as opposed to random oracles.

– The security can only be reduced to the hardness of solving
an underlying problem given an inversion oracle.

• Possible advantages:
– H is a fixed (randomized) function even within the model.
– The problem of inverting H’ might be “independent” from the

underlying mathematical problem – solving one of the
problems may not help in solving the other.

• Model introduced by Gennaro, Halevi, and Rabin.

Plaintext awareness

• A scheme with IND-CPA security is plaintext aware (PA) if
an adversary cannot form a valid ciphertext without the
corresponding plaintext being derivable from the oracle
queries and responses.

– The adversary has access to an encryption oracle and
random oracles but no decryption oracle.

• PA implies IND-CCA2 security.
– Decryption queries give no information since the adversary

already ”knows” the plaintext.

• Also, IND-CCA2 does not imply PA.
– In an IND-secure scheme, the public key may leak a valid

ciphertext without leaking the corresponding plaintext.

• PA makes sense only in the random oracle model.
– In the standard model, the adversary can encrypt a plaintext

and then “forget” it.

26

OAEP Parameters and Options

• Encoding parameters
– Often empty, but other possibilities exist

• Secure hash function
– Applied to the encoding parameters to produce a string

pHash

– Provides plaintext awareness

• Mask generation function (MGF)
– Based on a secure hash function (preferably the one

applied to the encoding parameters)

– If the MGF is instantiated by a random oracle, the
encoded message is (almost) uniformly random and
independent from the original plaintext

RSA-OAEP+

• OAEP+ is an adaptation of OAEP introduced by Victor
Shoup, replacing ”pHash” with a hash of a string containing
the plaintext and the seed

• OAEP+ can be combined with any secure trapdoor function,
whereas OAEP is provably secure only with RSA and Rabin

• The security reduction for RSA-OAEP+ is better than that
for RSA-OAEP; we have

εε* ≈≈ εε;
t* = t – O(q2)

• Yet, this is still not tight; the time bound is quadratic in the
number of queries

27

SAEP(+)

• SAEP is a padding method consisting of the first ”Feistel
round” of OAEP. SAEP+ is derived from OAEP+ in the same
manner

– SAEP introduced by Johnson and Matyas in the early 90s

– SAEP+ designed by Boneh in 2000

• Rabin-SAEP+ has a tight reduction that is linear in the
number of queries (i.e., t* = t – O(q))

– Yet, Rabin schemes are vulnerable to implementation
weaknesses that may leak the entire private key

• RSA-SAEP+ has a security reduction roughly equivalent to
that of RSA-OAEP

RSA-KEM+DEM for Key Transport

• RSA-KEM produces a key that can be used to encrypt data
– Suitable in some situations, but not always
– Gives a ciphertext overhead of a multiple of 128 bits (in the

case of AES) compared to e.g. RSA-OAEP when the message
is small

– Not appropriate in multiparty situations where the same data
should be distributed to many entities

• The same r cannot be used more than once

• RSA-KEM+DEM can also be used to encrypt a previously
generated key

– Solves the multiparty problem
– Fits nicely into existing protocols where the secret key is

generated outside the PKE module
– Yet, still gives ciphertext overhead compared to RSA-OAEP

